山东科技大学刘瑞《锂离子电池》前沿课程","children":[{"content":"锂离子电池结构,原理和关键参数","children":[{"content":"结构","children":[{"content":"正极材料,负极材料,电解液,隔膜,集流体,粘结剂,导电剂","children":[],"payload":{"tag":"li","lines":"13,14"}}],"payload":{"tag":"li","lines":"12,14"}},{"content":"原理","children":[{"content":"以LiCoO2∣∣C充电为例
\nLiCoO2+C6→Li1−xCoO2+LixC6","children":[{"content":"正极(cathode):LiCoO2","children":[{"content":"1 氧化反应(Co被氧化)","children":[],"payload":{"tag":"li","lines":"18,19"}},{"content":"2脱锂","children":[],"payload":{"tag":"li","lines":"19,20"}},{"content":"3 LiCoO2→Li1−xCoO2+xLi++xe−","children":[],"payload":{"tag":"li","lines":"20,21"}}],"payload":{"tag":"li","lines":"17,21"}},{"content":"负极(anode): 石墨","children":[{"content":"1 还原反应","children":[],"payload":{"tag":"li","lines":"22,23"}},{"content":"2 嵌锂","children":[],"payload":{"tag":"li","lines":"23,24"}},{"content":"3 C6+xLi++xe−→LixC6","children":[],"payload":{"tag":"li","lines":"24,25"}}],"payload":{"tag":"li","lines":"21,25"}}],"payload":{"tag":"li","lines":"15,25"}},{"content":"以LiCoO2∣∣C放电为例
\nLi1−xCoO2+LixC6→LiCoO2+C6","children":[{"content":"正极(cathod):LiCoO2","children":[{"content":"1 还原反应","children":[],"payload":{"tag":"li","lines":"28,29"}},{"content":"2 嵌锂","children":[],"payload":{"tag":"li","lines":"29,30"}},{"content":"3 Li1−xCoO2+xLi++xe−→LiCoO2","children":[],"payload":{"tag":"li","lines":"30,31"}}],"payload":{"tag":"li","lines":"27,31"}},{"content":"负极(anode): 石墨","children":[{"content":"1 氧化反应","children":[],"payload":{"tag":"li","lines":"32,33"}},{"content":"2 脱锂","children":[],"payload":{"tag":"li","lines":"33,34"}},{"content":"3 LixC6→C6+xLi++xe−","children":[],"payload":{"tag":"li","lines":"34,35"}}],"payload":{"tag":"li","lines":"31,35"}}],"payload":{"tag":"li","lines":"25,35"}}],"payload":{"tag":"li","lines":"14,35"}},{"content":"关键性能参数","children":[{"content":"容量=电池可释放的电量/穿梭的的锂离子的数量
\n单位:C(库伦) Ah(成品电池) mAh(科研)
\n1C=1As=0.278mAh","children":[{"content":"比容量","children":[{"content":"单位质量或体积的电池所释放的电量
\n单位:mAh/g","children":[],"payload":{"tag":"li","lines":"40,42"}}],"payload":{"tag":"li","lines":"39,42"}},{"content":"理论容量","children":[{"content":"法拉第常数F=96500 c/mol
\n1c=1As=0.278mAh
\nQ=26800mAh/mol","children":[{"content":"Q理论=3.6MnF(mAh/g)","children":[{"content":"Q理论=nM26800(mAh/g)","children":[],"payload":{"tag":"li","lines":"47,48"}}],"payload":{"tag":"li","lines":"46,48"}}],"payload":{"tag":"li","lines":"43,48"}}],"payload":{"tag":"li","lines":"42,48"}},{"content":"库伦效率","children":[{"content":"电池可释放的电量与充入电量的比值
\n首次库伦效率很重要---首效","children":[],"payload":{"tag":"li","lines":"49,51"}}],"payload":{"tag":"li","lines":"48,51"}},{"content":"额定容量","children":[],"payload":{"tag":"li","lines":"51,52"}},{"content":"实际容量","children":[],"payload":{"tag":"li","lines":"52,53"}},{"content":"放电深度","children":[],"payload":{"tag":"li","lines":"53,54"}}],"payload":{"tag":"li","lines":"36,54"}},{"content":"电势","children":[{"content":"电势也叫电位,是电极的属性","children":[{"content":"高压反应做正极,低压反应做负极","children":[],"payload":{"tag":"li","lines":"56,57"}}],"payload":{"tag":"li","lines":"55,57"}}],"payload":{"tag":"li","lines":"54,57"}},{"content":"电压:两电极间的电势差,电压是电池的属性","children":[{"content":"开路电压","children":[{"content":"电池没有负载时正负极两端的电压。进一步引申为不同脱嵌锂状态时的电势","children":[],"payload":{"tag":"li","lines":"59,60"}}],"payload":{"tag":"li","lines":"58,60"}},{"content":"工作电压","children":[{"content":"电池有负载时的电压 E=E开路−iR","children":[],"payload":{"tag":"li","lines":"61,62"}}],"payload":{"tag":"li","lines":"60,62"}},{"content":"截至电压","children":[{"content":"规定的最高充电电压或最低放电电压","children":[],"payload":{"tag":"li","lines":"63,64"}}],"payload":{"tag":"li","lines":"62,64"}},{"content":"中值电压","children":[],"payload":{"tag":"li","lines":"64,65"}}],"payload":{"tag":"li","lines":"57,65"}},{"content":"能量","children":[{"content":"能量(wh)=容量(ah)x电压(v)","children":[],"payload":{"tag":"li","lines":"66,67"}},{"content":"比能量(wh/kg)=比容量(mAh/g)*电压","children":[],"payload":{"tag":"li","lines":"67,68"}}],"payload":{"tag":"li","lines":"65,68"}},{"content":"寿命","children":[{"content":"循环寿命","children":[{"content":"容量保持率
\n循环多圈后容量与首次容量的比值","children":[],"payload":{"tag":"li","lines":"70,72"}}],"payload":{"tag":"li","lines":"69,72"}},{"content":"搁置寿命","children":[],"payload":{"tag":"li","lines":"72,73"}}],"payload":{"tag":"li","lines":"68,73"}},{"content":"功率","children":[{"content":"倍率(c)","children":[{"content":"1c=1h 充满电池的理论容量所用的电流密度
\n0.1c=10h","children":[],"payload":{"tag":"li","lines":"75,77"}}],"payload":{"tag":"li","lines":"74,77"}},{"content":"考虑容量单位,速率用电流(mA)表示
\n考虑比容量单位,速率用电流密度(mA/g)表示","children":[],"payload":{"tag":"li","lines":"77,79"}}],"payload":{"tag":"li","lines":"73,79"}}],"payload":{"tag":"li","lines":"35,79"}}],"payload":{"tag":"li","lines":"11,79"}},{"content":"锂离子电池测试技术","children":[{"content":"半电池","children":[{"content":"正极壳,集流体,电极材料,隔膜,锂, 负极壳","children":[],"payload":{"tag":"li","lines":"81,82"}}],"payload":{"tag":"li","lines":"80,82"}}],"payload":{"tag":"li","lines":"79,82"}}],"payload":{"tag":"li","lines":"10,82"}},{"content":" 武汉大学曹余良-钠离子电池材料和体系新进展","children":[],"payload":{"tag":"li","lines":"82,83"}},{"content":" 1.西安交通大学韩晓刚-多孔石墨烯的快速制备及储能应用","children":[{"content":"全文概述","children":[{"content":"科研团队在多孔石墨烯的快速制备及其在储能应用方面取得了显著成果。多孔石墨烯因其独特的结构特性,被广泛认为能显著提高电池储能效率。研究团队通过物理与化学方法,在石墨烯片层内部引入孔洞,再利用高温空气处理和微波照射等技术,有效提升了石墨烯的孔隙率和储能性能。这些方法不仅提高了多孔石墨烯的导电性和储能能力,而且操作简便,成本低廉,为大规模生产提供了可能。多孔石墨烯在锂离子电池中的应用展示了其通过减少锂离子传输路径阻力,提高充放电效率的潜力。此外,多孔石墨烯在储热材料和超级电容器中的应用也显示出其在不同储能技术领域的广泛适用性。研究团队还通过氮气、氧气和微波处理等手段,对石墨烯进行掺杂改性,进一步提升了其储能性能。展望未来,尽管多孔石墨烯在实际应用中面临一些挑战,但持续的研究和优化将为其在能源存储领域发挥更大作用奠定基础。:","children":[],"payload":{"tag":"li","lines":"85,86"}}],"payload":{"tag":"li","lines":"84,86"}},{"content":"报告内容","children":[{"content":"多层石墨烯的快速制备以及储能应用","children":[{"content":"由于石墨烯的高气密性,锂离子难以通过石墨烯片,影响了锂离子的传输效率。通过在石墨烯片层内打孔,形成二维纳米孔石墨烯片,可以显著提高锂离子的传输能力,从而提高电池的性能","children":[],"payload":{"tag":"li","lines":"88,89"}}],"payload":{"tag":"li","lines":"87,89"}},{"content":"04:45 多孔石墨烯的制备方法及其特性","children":[{"content":"包括CVD模板法、催化剂蚀刻法以及强酸强碱处理法,指出这些方法虽有效但步骤繁琐、成本较高,不适合大规模生产。,","children":[],"payload":{"tag":"li","lines":"90,91"}},{"content":"利用石墨烯中非晶区域和晶体区域在热稳定性上的差异,在空气中加热去除非晶部分,从而形成多孔石墨烯。此方法虽耗时较长,但通过调整温度可以调控孔的大小,","children":[],"payload":{"tag":"li","lines":"91,92"}}],"payload":{"tag":"li","lines":"89,92"}},{"content":"10:56 石墨烯加热反应及多孔石墨烯在超容电极的应用","children":[{"content":",多孔石墨烯制成的超级电容器能显著提高单位体积的电容,这归因于其更整齐的排列和更高的表观密度,从而实现更高的能量密度和更小的驱动体积。","children":[],"payload":{"tag":"li","lines":"93,94"}}],"payload":{"tag":"li","lines":"92,94"}},{"content":"16:36 微波处理加速多孔石墨烯制备及应用","children":[{"content":"通过使用微波处理,可以显著提高多孔石墨烯的制备效率,从原本的八九个小时缩短到十几秒,实验显示,在空气中使用微波处理可以观察到明显的电弧和火花,而在氮气中则火光较弱,证实了氧气在这一过程中的关键作用。此外,使用氩气也能产生等离子体效果,但不如氧气显著。这","children":[],"payload":{"tag":"li","lines":"95,96"}}],"payload":{"tag":"li","lines":"94,96"}},{"content":"22:13 石墨烯与石蜡混合物在微波下的相变研究","children":[{"content":"气体的温度压力这些不可控,因此使用固体材料和石墨烯的研究。探讨了石墨烯与石蜡混合物在微波作用下的反应,。实验结果显示,单纯的石蜡在微波中几乎不发生变化,而加入石墨烯后,随着石墨烯含量的增加,石蜡的相变速度显著加快,且能在较短时间内从固体转变为液体。这表明石墨烯能有效吸收微波能量并将其转化为热能,进而加速石蜡的相变过程。此外,对于微观机理,提出了一种假说,即石墨烯上的缺陷导致其能级分布更细,从而使得在固体材料中,电子跃迁产生的能量以热的形式迅速传递给周围的界面材料,而非以光子的形式释放。","children":[],"payload":{"tag":"li","lines":"97,98"}}],"payload":{"tag":"li","lines":"96,98"}}],"payload":{"tag":"li","lines":"86,98"}}],"payload":{"tag":"li","lines":"83,98"}},{"content":" 2. 浙江大学陆盈盈-高能量密度金属锂电池及其负极保护机制","children":[{"content":"全文概述","children":[{"content":"科研团队针对高能量密度金属锂电池及其负极保护机制进行了深入探索,以克服不均匀沉积、体积膨胀及高反应活性等挑战。通过优化固体电解质界面(SEI)层、应用脉冲充电技术以及选用合适的高电压正极材料,该团队有效提升了电池的安全性和使用寿命。","children":[],"payload":{"tag":"li","lines":"100,101"}}],"payload":{"tag":"li","lines":"99,101"}},{"content":"报告内容","children":[{"content":"00:00 高能量密度金属锂电池及其负极保护机制","children":[{"content":"金属锂电池因其超高能量密度,被认为是未来能源需求的重要解决方案。然而,金属锂电池面临诸多挑战,如不均匀的锂沉积导致电池内部短路和寿命缩短,以及金属锂的高反应活性导致与电池内部材料的副反应。","children":[],"payload":{"tag":"li","lines":"103,104"}}],"payload":{"tag":"li","lines":"102,104"}},{"content":"02:45 改进锂离子电池安全性与性能的策略","children":[{"content":"传统的锂离子中,只要充放电过快、过充,等等情况下都会产生一个锂枝晶。所以通过采用合理的SEI界面人工层和复合金属锂负极,以及脉冲充电技术和匹配高电压正极材料,旨在提高电池的安全性能和能量密度。","children":[],"payload":{"tag":"li","lines":"105,106"}}],"payload":{"tag":"li","lines":"104,106"}},{"content":"04:10 通过改变SEI来提高电池寿命","children":[{"content":"氟化锂在锂金属表面形成低阻抗的钝化层,有利于锂离子快速穿梭,显著提升电池寿命。此外,通过调整有机相的电子密度,提高SEI膜的抗还原能力,并利用锡类助溶剂调控金属锂沉积,形成更致密的沉积层,实现了超高的容量效率。","children":[],"payload":{"tag":"li","lines":"107,108"}}],"payload":{"tag":"li","lines":"106,108"}},{"content":"06:48 高寿命锂金属电池的优化与结构创新","children":[{"content":"为解决体积效应问题,团队设计了一种框架结构,将薄负极固定,形成笼子结构,有效控制体积膨胀并降低电荷电阻","children":[],"payload":{"tag":"li","lines":"109,110"}}],"payload":{"tag":"li","lines":"108,110"}}],"payload":{"tag":"li","lines":"101,110"}}],"payload":{"tag":"li","lines":"98,110"}},{"content":" 3. 四川大学林紫锋-二维MXene及其电化学储能","children":[],"payload":{"tag":"li","lines":"110,111"}},{"content":" 4. 中国科学技术大学余彦-M-Q Batteries (M=Li, Na, K)(Q=S, Se and SexSy)","children":[],"payload":{"tag":"li","lines":"111,112"}},{"content":" 5. 中国科学院成会明院士-大道至简,简以致用:二维材料的制备浅谈","children":[],"payload":{"tag":"li","lines":"112,113"}},{"content":" 6. 华中科技大学李芳芳-功能碳材料的制备及储能研究","children":[],"payload":{"tag":"li","lines":"113,114"}},{"content":" 7. 浙江大学刘英军-石墨烯材料导电性能提升策略","children":[],"payload":{"tag":"li","lines":"114,115"}},{"content":" 8. 伍伦贡大学郭再萍-Development of high performance potassium ion batteries","children":[],"payload":{"tag":"li","lines":"115,116"}},{"content":" 9. 俄勒冈州立大学纪秀磊-Considerations to storage batteries","children":[],"payload":{"tag":"li","lines":"116,117"}},{"content":" 10. 伍伦贡大学侴术雷-普鲁士蓝基的钠离子电池的研究与开发","children":[],"payload":{"tag":"li","lines":"117,118"}},{"content":" 11. 中国科学技术大学余彦-钠(钾)离子电池的正、负极材料设计与储能机理","children":[],"payload":{"tag":"li","lines":"118,119"}},{"content":" 12. 北京化工大学刘文-金属锂负极的结构设计和表面化学调控","children":[],"payload":{"tag":"li","lines":"119,120"}},{"content":" 13. 中国科学院韩布兴院士-绿色化学及绿色碳科学","children":[],"payload":{"tag":"li","lines":"120,121"}},{"content":" 14. 山东大学李国兴-基于锂金属负极的高能量密度电池的研究","children":[],"payload":{"tag":"li","lines":"121,122"}},{"content":" 15. 中国科学院吴凡-硫化物全固态电池技术及固态电解质材料","children":[],"payload":{"tag":"li","lines":"122,123"}},{"content":" 16. 扬州大学庞欢-配合物框架材料的能源化学研究","children":[],"payload":{"tag":"li","lines":"123,124"}},{"content":" 17. 爱思唯尔云端论坛:能源前沿论坛","children":[{"content":"(1)斯坦福大学崔屹教授-原位冷冻电镜助力能源前沿探索","children":[],"payload":{"tag":"li","lines":"125,126"}},{"content":"(2)东华大学朱美芳院士-碳基纤维在可穿戴能源储存器件中的应用","children":[],"payload":{"tag":"li","lines":"126,127"}},{"content":"(3)天津大学巩金龙教授-人工树叶:面向太阳能燃料的光电化学转化过程","children":[],"payload":{"tag":"li","lines":"127,128"}},{"content":"(4)复旦大学赵东元院士-功能介孔材料的界面组装","children":[],"payload":{"tag":"li","lines":"128,129"}},{"content":"(5)阿德莱德大学乔世璋教授-能源电催化","children":[],"payload":{"tag":"li","lines":"129,130"}},{"content":"(6)华中科技大学黄云辉教授-电池安全和安全电池","children":[],"payload":{"tag":"li","lines":"130,131"}}],"payload":{"tag":"li","lines":"124,131"}},{"content":" 18. 伍伦贡大学郭再萍-制造能量密度更高的锂离子电池","children":[],"payload":{"tag":"li","lines":"131,132"}},{"content":" 19. 格里菲斯大学张山青-Functional Binders for New Generation Energy Storage Devices","children":[],"payload":{"tag":"li","lines":"132,133"}},{"content":" 20. 西安交通大学宋江选-锂电粘结剂的结构设计","children":[],"payload":{"tag":"li","lines":"133,134"}},{"content":" 21. 南洋理工大学范红金-如何让你的稿子过编辑这一关","children":[],"payload":{"tag":"li","lines":"134,135"}},{"content":" 22. 中科院化学所郭玉国-金属锂固态电池研究进展","children":[],"payload":{"tag":"li","lines":"135,136"}},{"content":" 23. 华东理工大学刘洪来-超级电容器储能材料的设计与筛选","children":[],"payload":{"tag":"li","lines":"136,137"}},{"content":" 24. 武汉大学曹余良-钠离子电池关键材料及应用体系探讨","children":[],"payload":{"tag":"li","lines":"137,138"}},{"content":" 25. 天津大学许运华-锂-有机电池:有机电极的构筑与反应机理","children":[],"payload":{"tag":"li","lines":"138,139"}},{"content":" 26. 俄勒冈州立大学纪秀磊-展望水系电池:挑战与机遇","children":[],"payload":{"tag":"li","lines":"139,140"}},{"content":" 27. 清华大学张强-金属锂负极的能源化学新机制","children":[],"payload":{"tag":"li","lines":"140,141"}},{"content":" 28 中国科学技术大学余彦-钠(钾)离子电池负极材料研究","children":[],"payload":{"tag":"li","lines":"141,142"}},{"content":" 29. 南开大学周震-从材料模拟到人工智能的能源材料创新","children":[],"payload":{"tag":"li","lines":"142,143"}},{"content":" 30. 南开大学牛志强-水系锌离子电池材料与器件设计","children":[],"payload":{"tag":"li","lines":"143,144"}},{"content":" 31. 北京理工大学黄佳琦-锂硫电池固液界面调控策略","children":[],"payload":{"tag":"li","lines":"144,145"}},{"content":" 32. 武汉大学艾新平-动力电池安全性问题及改善技术","children":[],"payload":{"tag":"li","lines":"145,146"}},{"content":" 33. 中科院化学所郭玉国-硅基负极材料—从基础研究到产业应用","children":[],"payload":{"tag":"li","lines":"146,147"}},{"content":" 34. 北京大学夏定国-高容量富锂正极材料过去、现在及发展","children":[],"payload":{"tag":"li","lines":"147,148"}},{"content":" 35. 东莞瑞泰新材料科技有限公司李召平-碳基导电剂在锂电池中的应用","children":[],"payload":{"tag":"li","lines":"148,149"}},{"content":" 36. 北京化工大学邱介山-超级电容器电极材料的设计、结构与性能","children":[],"payload":{"tag":"li","lines":"149,150"}},{"content":" 37. 中科院物理所禹习谦-高能量密度锂电池关键电极材料研究","children":[],"payload":{"tag":"li","lines":"150,151"}},{"content":" 38. 武汉理工大学麦立强-纳米线储能材料与器件","children":[],"payload":{"tag":"li","lines":"151,152"}},{"content":" 39. 天津大学杨全红教授-高密组装和致密储能-石墨烯用于电化学储能的思考与实践","children":[],"payload":{"tag":"li","lines":"152,153"}},{"content":" 40. 南开大学周震教授-钠离子电池和混合电容器的研究进展","children":[],"payload":{"tag":"li","lines":"153,154"}},{"content":" 41. 安徽工业大学何孝军教授-超电用碳基电极材料的构筑和性能","children":[],"payload":{"tag":"li","lines":"154,155"}},{"content":" 42. 扬州大学王舜教授-高密度多孔碳的设计合成与储能应用","children":[],"payload":{"tag":"li","lines":"155,156"}},{"content":" 43. 中科院物理所陆雅翔副研究员-钠离子电池碳负极制备及其储钠机制研究","children":[],"payload":{"tag":"li","lines":"156,157"}}],"payload":{"tag":"li","lines":"9,157"}},{"content":"公众号","children":[{"content":" 锂离子电池技术全解析:新手入门必备指南","children":[],"payload":{"tag":"li","lines":"158,159"}},{"content":" 电池知识全知道:100 个必知问题答疑(二)","children":[],"payload":{"tag":"li","lines":"159,160"}},{"content":" 一文读懂,电池的能量密度解析!","children":[],"payload":{"tag":"li","lines":"160,161"}},{"content":" 电池历史:锂离子电池的发明(上)","children":[],"payload":{"tag":"li","lines":"161,162"}},{"content":" 电池历史:锂离子电池的发明(下)","children":[],"payload":{"tag":"li","lines":"162,163"}},{"content":" 【石墨烯】石墨烯、氧化石墨烯、还原氧化石墨烯,三者之间的区别,你弄明白了吗?","children":[],"payload":{"tag":"li","lines":"163,164"}},{"content":" 固态电池是什么?一文看懂!","children":[],"payload":{"tag":"li","lines":"164,165"}},{"content":" 电池知识全知道:100 个必知问题答疑(一)","children":[],"payload":{"tag":"li","lines":"165,167"}}],"payload":{"tag":"li","lines":"157,167"}}],"payload":{"tag":"h2","lines":"8,9"}},{"content":"MXene","children":[{"content":"MXene材料概述","children":[{"content":"MXene简介","children":[{"content":"MXene是一类新型的二维材料,由过渡金属碳化物、氮化物或碳氮化物组成。它们是通过选择性蚀刻MAX(Mn+1AXn-M代表过度金属元素。A主要是ⅢA~ⅣA族元素。X代表碳或者氮元素)相材料中的"A"层而制备得到的。MXene的名称来源于其制备过程(化学式:Mn+1XnTx T=-OH -O -F)。","children":[],"payload":{"tag":"li","lines":"170,171"}}],"payload":{"tag":"li","lines":"169,171"}},{"content":"MXene材料制备方法","children":[{"content":"MAX相刻蚀去除A原子","children":[{"content":"HF刻蚀法","children":[],"payload":{"tag":"li","lines":"173,174"}},{"content":"原位形成HF刻蚀法","children":[],"payload":{"tag":"li","lines":"174,175"}},{"content":"电化学刻蚀法","children":[],"payload":{"tag":"li","lines":"175,176"}},{"content":"碱刻蚀法","children":[],"payload":{"tag":"li","lines":"176,177"}}],"payload":{"tag":"li","lines":"172,177"}},{"content":"对多片层MXene进行插层剥离","children":[{"content":"减弱层间范德瓦耳斯力","children":[],"payload":{"tag":"li","lines":"178,179"}}],"payload":{"tag":"li","lines":"177,179"}}],"payload":{"tag":"li","lines":"171,179"}},{"content":"MXene材料性质","children":[{"content":"导电性","children":[],"payload":{"tag":"li","lines":"180,181"}},{"content":"磁学性质","children":[],"payload":{"tag":"li","lines":"181,182"}},{"content":"分散性","children":[],"payload":{"tag":"li","lines":"182,183"}},{"content":"稳定性","children":[],"payload":{"tag":"li","lines":"183,184"}},{"content":"光学性能","children":[],"payload":{"tag":"li","lines":"184,185"}}],"payload":{"tag":"li","lines":"179,185"}},{"content":"MXene材料的应用","children":[{"content":"储能","children":[],"payload":{"tag":"li","lines":"186,187"}},{"content":"催化","children":[],"payload":{"tag":"li","lines":"187,188"}},{"content":"传感","children":[],"payload":{"tag":"li","lines":"188,189"}},{"content":"电磁屏蔽","children":[],"payload":{"tag":"li","lines":"189,190"}},{"content":"吸附","children":[],"payload":{"tag":"li","lines":"190,191"}},{"content":"储氢","children":[],"payload":{"tag":"li","lines":"191,192"}},{"content":"生物医疗","children":[],"payload":{"tag":"li","lines":"192,193"}}],"payload":{"tag":"li","lines":"185,193"}}],"payload":{"tag":"li","lines":"168,193"}},{"content":"MXene材料的制备","children":[{"content":"含氟刻蚀法","children":[{"content":"HF刻蚀法","children":[{"content":"基于氟离子与铝的高反应活性,使得HF能够打破MAX相中较弱的M-A键,选择性的刻蚀掉A层原子,而M-X不受影响,得到多片层堆叠的MXene","children":[],"payload":{"tag":"li","lines":"196,197"}},{"content":"几乎所有的Al基MAX相均可用于HF刻蚀合成MXene","children":[],"payload":{"tag":"li","lines":"197,198"}},{"content":"产率影响因素","children":[{"content":"HF的浓度,刻蚀温度,刻蚀时间","children":[],"payload":{"tag":"li","lines":"199,200"}}],"payload":{"tag":"li","lines":"198,200"}}],"payload":{"tag":"li","lines":"195,200"}},{"content":"原位形成HF刻蚀法","children":[{"content":"防止HF刻蚀剂的腐蚀性强,操作不便","children":[],"payload":{"tag":"li","lines":"201,202"}},{"content":"1 酸/氟酸盐刻蚀法(HCL/LiF[NaF/KF/FeF3])","children":[{"content":"HCL/LiF最常用,通过此刻蚀剂得到的手风琴状MXene可直接通过温和的超声和手摇得到单层的MXene","children":[],"payload":{"tag":"li","lines":"203,204"}},{"content":"LiF的浓度对MXene的物理性质有很大影响","children":[],"payload":{"tag":"li","lines":"204,205"}},{"content":"刻蚀范围局限于含Al的MAX和部分非MAX相","children":[],"payload":{"tag":"li","lines":"205,206"}}],"payload":{"tag":"li","lines":"202,206"}},{"content":"2 双氟盐刻蚀法(NH4HF2)","children":[{"content":"得到的产物不能直接获得单片层,要加入插层剂","children":[],"payload":{"tag":"li","lines":"207,208"}}],"payload":{"tag":"li","lines":"206,208"}}],"payload":{"tag":"li","lines":"200,208"}},{"content":"含氟熔融盐刻蚀法","children":[],"payload":{"tag":"li","lines":"208,209"}}],"payload":{"tag":"li","lines":"194,209"}},{"content":"无氟刻蚀法","children":[{"content":"电化学刻蚀","children":[{"content":"以前驱体max相为工作电极,在特定电压下进行电化学反应","children":[],"payload":{"tag":"li","lines":"211,212"}},{"content":"刻蚀电位,刻蚀时间,电解液(电解液含有氯离子是刻蚀的必备条件)","children":[],"payload":{"tag":"li","lines":"212,213"}},{"content":"刻蚀时间加长,会使得MXene层变成CDC。因此产生MAX相内核,MXene中间层,CDC外层。产率降低。因此需要加入插层剂,扩大层间距","children":[],"payload":{"tag":"li","lines":"213,214"}}],"payload":{"tag":"li","lines":"210,214"}},{"content":"碱刻蚀法","children":[{"content":"必要条件:高温,高浓度碱","children":[],"payload":{"tag":"li","lines":"215,216"}},{"content":"Ti3Al2C2 与27.5mol/LNaoH 270℃","children":[],"payload":{"tag":"li","lines":"216,217"}}],"payload":{"tag":"li","lines":"214,217"}},{"content":"路易斯酸熔融盐刻蚀法","children":[{"content":"路易斯酸是指能够接受电子对的分子","children":[],"payload":{"tag":"li","lines":"218,219"}}],"payload":{"tag":"li","lines":"217,219"}}],"payload":{"tag":"li","lines":"209,219"}}],"payload":{"tag":"li","lines":"193,219"}},{"content":"MXene材料的结构与性质","children":[],"payload":{"tag":"li","lines":"219,220"}},{"content":"MXene在超级电容中的应用","children":[],"payload":{"tag":"li","lines":"220,221"}},{"content":"MXene在碱金属离子电池中的应用","children":[],"payload":{"tag":"li","lines":"221,222"}},{"content":"MXene在锂硫电池中的应用","children":[],"payload":{"tag":"li","lines":"222,223"}},{"content":"MXene在水系锌离子电池中的应用","children":[],"payload":{"tag":"li","lines":"223,224"}},{"content":"MXene多功能导电粘结剂在电极成型中的应用","children":[],"payload":{"tag":"li","lines":"224,225"}}],"payload":{"tag":"h2","lines":"167,168"}}],"payload":{"tag":"h1","lines":"7,8"}}